I think it's a good question because the fact player 10 has so
few choices for partners allows you to reason about the later
FIDE rules like C13 and C14, something which you don't often get
a chance to do.
At the moment, Games::Tournament::Swiss's pairing of the round is
consistent with Denis Jessop's observation that C14's decreasing
of p to 1 in the second bracket allows you to avoid joining all
10 players into one big score bracket.
Code:
No Opponents Colours Float Score
1 : 6,4,2,5 WBWB D 3.5
2 : 7,3,1,4 BWBW D 3.5
3 : 8,2,6,7 WBWB D 2.5
6 : 1,5,3,9 BWBW D 2.5
4 : 9,1,7,2 BWBB U 2
5 : 10,6,8,1 WBWW U 2
8 : 3,9,5,10 BWBW D 2
7 : 2,10,4,3 WBWW U 1
9 : 4,8,10,6 WBWB U 1
10 : 5,7,9,8 BWBB U 0
However, it is not producing the same pairings as Sm5.
Instead it is producing 1&3, 10&2, 6&7, 4&8, 9&5
It pairs the last 4 tables like this:
Code:
Next, Bracket 3: 6 2 4 8 9 10 7 5
C1, B1,2 test: ok, no unpairables
C2, x=1
C3, p=4 Homogeneous.
C4, S1 & S2: 2 6 4 5 & 8 9 10 7
C5, ordered: 2 6 4 5 &
8 7 9 10
C6, B1a: table 3 4 NOK
C7, 8 7 10 9
C6, B2a: table 3 NOK
C7, 8 9 7 10
C6, B1a: table 2 3 4 NOK
C7, 8 10 7 9
C6, B1a: table 3 NOK
C7, 8 10 9 7
C6, B1a: table 3 NOK
C7, 7 8 9 10
C6, B1a: table 1 3 4 NOK
C7, 9 8 7 10
C6, B1a: table 3 4 NOK
C7, 9 8 10 7
C6, B2a: table 3 4 NOK
C7, 9 7 8 10
C6, B1a: table 4 NOK
C7, 9 7 10 8
C6, B1a: table 4 NOK
C7, 9 10 8 7
C6, B2a: table 4 NOK
C7, 9 10 7 8
C6, B1a: table 3 4 NOK
C7, 10 8 7 9
C6, B1a: table 3 NOK
C7, 10 8 9 7
C6, B1a: table 3 NOK
C7, 10 7 8 9
C6, Tables 1 2 3 4 paired. E1 10&2 E2 6&7 E1 4&8 E1 9&5
Sm5 paired round 5 as:
1 v 3
8 v 2
10 v 6
4 v 5
9 v 7
What about floats here?